If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2+43d=0
a = 1; b = 43; c = 0;
Δ = b2-4ac
Δ = 432-4·1·0
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(43)-43}{2*1}=\frac{-86}{2} =-43 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(43)+43}{2*1}=\frac{0}{2} =0 $
| 12x+3=17x+3 | | 50/x=25/100 | | 2(n+1)+2=10 | | g÷29=16 | | -24=3(v-9) | | 5(x=4)=6x-8 | | 4x16= | | x+2x-11=41 | | 10-3d=-10+2d | | m÷(-105)=8 | | 2(x-14)=48 | | -7(a-4)=-7a+28 | | 3j+3=2j | | 2.71(g+7)=-8.13 | | 3/xx2=2/3x-4 | | X2+y=15 | | 3x-4(3x+2)=10 | | 8+x=60 | | 10=k/3-4+k/8 | | a-14=-17 | | 4(x-11)=-76 | | 1/3x-8=-9= | | 45=5(z–3) | | x3+12=19 | | -2(c-8)+-5=-1 | | .2x+.9=4.1 | | 4(x-8)=-32+4× | | 3x+72=5x-8 | | 3x+72=5x-37 | | -112q=-1456 | | −2x+6=22 | | 45=3(y-7) |